
Linux Journal - The Premier Magazine of the Linux Community http://www.linuxjournal.com/print.php?sid=7596

1 von 3 16.06.2004 12:08

How Linux Saved My Files and My Job
Date: Tuesday, May 25, 2004

Topic: Other Software

Rory Winston

Next time your NTFS-based drive decides to take a sudden trip down south, give BG-Rescue Linux a try.

This is a story of how Linux saved my life. Well, actually, not my life but perhaps my job. This is the
story of how Linux helped me to recover some important data that I had almost given up on ever getting
back, saving my employer and me a whole lot of time, effort and frustration in the process.

Picture the scene: you’re sitting at your desk, writing some code for a client on your aging but reliable
ThinkPad. Things all seem to be coming together nicely, and you’re putting the finishing touches on the
last unit test in the current package. You make a modification, press Ctrl and F11, and Eclipse fires up the
JUnit. As you wait for the unit test progress bar to reach 100%, you notice that Eclipse literally has begun
to crawl. It’s true that Eclipse can be a memory hog at the best of times, but this is unusually severe. You
turn away for a second, drum your fingers on the desk,and when you turn back, there’s a big ugly blue
screen of death (BSOD) staring you in the face.

Back in the days of Win95/98, BSODs were common, and NT had its fair share as well--I even had a joke
BSOD screensaver at one point. But, Win2k is better in this regard, and a blue screen usually means
something is seriously amiss. The message on the screen reads: KERNEL_DATA_INPAGE_ERROR. The only 
driver visible in the stack trace is atapi.sys, the IDE driver. You scribble down some details. A few
minutes of judicious Googling may be able to shed some light on the problem--when the machine restarts.
The Win2k memory dump takes an inordinately long time to complete. As you reboot after the dump is
complete, you make a mental note to make a backup. It’s been a long time since you backed up anything.

The Win2k progress bar gets about 70% across; it’s still noticeably slower than normal now and then it
bluescreens again. This time it reads INACCESSIBLE_BOOT_DEVICE. The cold hand of fear begins to tighten
around you; this is not good. From bitter experience, you know that spontaneous errors related to boot
devices are the worst. A few reboots later and nothing has changed. Powering off and then back on
produces the same result, and safe mode is no better. It’s at this point that you remember the code you
were working on hasn’t been checked into CVS yet. It was going to be refactored heavily before you
added it to the source repository. You could try and place the blame on CVS and its propensity for making
difficult the large-scale refactoring of a project structure--and this would be true--but the reality is you
should have checked in the code earlier, if only to guard against such a situation. This really is going to
mess up the deadline for this portion of the project deliverables. So what to do? Taking a deep breath, you
weigh up the options and decide to try and find a way to recover the data.

In my case, at first glance, it seemed as though the hard drive or possibly even the drive controller was at
fault. So, I grabbed an identical ThinkPad model and swapped the drives across. The other ThinkPad drive
booted up fine, but the drive still was, to use the technical vernacular, knackered. I couldn’t simply whip
out the drive and attach it as a slave drive on another computer’s IDE controller, this being a ThinkPad
drive, and all.

My next port of call was the Windows 2000 install CD. I put it in and fired up the recovery console. I
recently used the recovery console to restore a corrupted NT boot loader, so I figured it might do the trick
here. At the least, I hoped I might be able to get a command-prompt view into the hard drive so I could
run chkdsk. When I finally got to the DOS prompt, chkdsk didn’t want to know about it. Drive C 
contains unrecoverable errors was all it wanted to say on the matter. So that option was out.

The next few hours were tedious and frustrating, to say the least. I alternated between three well-known
disk recovery and repair software programs, formatting floppies, installing the programs onto the floppies
and then attempting to run the programs against the damaged disk. The experiences varied, but the end
result was always the same. One of the programs couldn’t run without utilizing EMS (extended memory)
on DOS, but its extended memory manager (EMM368.EXE) always crapped out, complaining that it
couldn’t find an unused 64K frame to use as extended memory. A look at the help for EMM386.EXE and
a quick look at CONFIG.SYS and AUTOEXEC.BAT (thought I’d seen the last of those guys a few years
ago) revealed that there were some settings to alter the locations at which EMM368.EXE probed for
unused memory. However, I really didn’t know what memory ranges I safely could specify, and the



Linux Journal - The Premier Magazine of the Linux Community http://www.linuxjournal.com/print.php?sid=7596

2 von 3 16.06.2004 12:08

prospect of finding out by way of trial-and-error wasn’t appealing. To make matters worse, any reference
material I found on EMM386 was for the MS-DOS version; I was using Caldera DR-DOS.

I got similar results from the next program. It looked promising at first--it actually started enumerating
through the filesystem on the disk. About 30% of the way through, however, it crashed with an ugly DOS
page fault error.

Maybe if I could get a boot disk, I could get a DOS command prompt, I thought. So I dutifully looked
around and found a great site called www.bootdisk.com. I downloaded the DOS 6.22 and Win98 SE boot
disks. I decided to go with the Win98 SE boot disk, figuring it would have better support for long
filenames and so on. I then dimly remembered a site I hadn’t visited for a while, a Windows kernel
development site called www.sysinternals.com. This site is a gem; it’s full of hardcode techie info, plus
loads of useful, tricky little utilities, including a lot of useful source code. The utility I was after was
called NTFSDOS, and it basically consists of a driver (NTFSDOS.VXD) that allows read-only (for the
free version) and read-write (for the pay version) access to NTFS from DOS. I downloaded the utility,
stuck it on a floppy and booted into DOS. I ran NTFSDOS.EXE and, lo and behold, there was my
drive--the first positive development all day.

I quickly browsed around the file structure and verified that things seemed to be intact. I then cataloged
the important files I needed to rescue. The Trouble was my only media was a few floppies. This might
seem okay in theory, but the more I browsed through the disk, the more stuff I found that I wanted to
keep. Also, the source tree alone that I wanted to retrieve was pretty large. There also were things such as
directories with 12 PowerPoint presentations at about 2MB apiece. I also had other essential items,
.MAME for one. Clearly, this was not going to be easy. I searched around for a DOS NIC driver for my
specific MiniPCI Ethernet/56k combo, but I couldn’t find one anywhere.

At this point, things looked pretty bleak. Without a working NIC under DOS, I could spend about a week
with a handful of floppies and a copy of PkZIP--not an ideal solution. It was at this point that I
remembered using Linux once to recover some data from an NT server I ran in university. I also recently
remembered a friend recounting to me how he had lost the administrator password to his Windows box
and had reset it using a Linux-based boot floppy that altered the SAM. I shrugged and thought I might as
well give it a try. No other practical options were left at this point.

I’ve been a Linux user since about 1997 and a FreeBSD user for the last couple of years, but I had never
tried any of the floppy-based distros. I looked around and quickly came across a floppy distro called
BG-Rescue Linux. This seemed to be a pretty capable little distro, specifically aimed at disaster recovery.
The current version of BG-Rescue Linux is 0.3.1, which is compiled with kernel version 2.4.24, and it
supported a host of Ethernet devices--it even had USB and PCMCIA network device support. A host of
command-line utilities are provided by BusyBox, and BG-Rescue Linux uses the uClibC C library. What 
really made my eyes light up was the inclusion of NTFS support. This uses the LinuxNTFS driver, which 
is a complete and heavily improved rewrite of the older NTFS driver I had used. BG-Rescue Linux comes
complete with the ntfsprogs package, which contains, among other things, tools to non-destructively
resize an NTFS partition under Linux.

I downloaded the two floppy disk install images and wrote them onto two blank floppies using dd 
if=imagename.img of=/dev/fd0. I then inserted the first floppy into the stricken laptop and rebooted. The 
familiar Linux init sequence rolled up onto the screen, accompanied by a colorful Tux image. I was
prompted for a preferred display resolution, followed by a prompt to insert the second floppy disk. It then
unzipped its filesystem images into RAM, and a minute or so later I was sitting at a root shell prompt.

First of all, I checked to see if it had picked up the network card. A quick scan of the output of dmesg
confirmed that it had found something, all right, and assigned it a driver. I set the IP address and netmask
using ifconfig (ifconfig eth0 xx.xx.xx.xx. netmask yy.yy.yy.yy), and then attempted to ping another 
machine on the same network. It worked. A quick moment of elation ensued, and then it was on to the
hard work--accessing and backing up the filesystem. Truth be told, it wasn’t that hard at all. In fact, it was
downright simple. My next step was to create the directory /mnt/win2k and mount my NTFS partition
under that by running mount -t ntfs /dev/hda1 /mnt/win2k. Two seconds later, I had access to the 
entire NTFS directory tree. Things were finally starting to look positive.

The next step was to perform the actual file backups. I had a couple of options; BG-Rescue Linux comes
with SMB and NFS support and also has cmdftp built in. Deciding to go for the quick-and-easy SMB
share route, I hopped over to our new Dell server (running Red Hat 9) and set up a Samba share called,
appropriately enough, disaster. Going back to the laptop, I accessed the share with smbclient, like so:

smbclient //xx.xx.xx.xx/disaster <password> 

where xx.xx.xx.xx was the Red Hat server’s IP address. This dropped me into an FTP-like environment; it



Linux Journal - The Premier Magazine of the Linux Community http://www.linuxjournal.com/print.php?sid=7596

3 von 3 16.06.2004 12:08

even had a similar command set (prompt, mget, mput). I was able to back up all of the necessary files and
directory trees quickly and easily by turning on smbclient’s recurse option to copy entire directory trees
with one command. In fact, it would have been even easier if the smbfs filesystem was supported and
smbmount was included in the command set for the distro--a suggestion for the next release of BG
Rescue, perhaps?

So, now I’m writing this article on a backup laptop. My new one currently is on order. Both work and
personal data has been recovered and dutifully backed up, the project manager was placated and I’m
overall safe in the knowledge that I have come out pretty well from this potentially disastrous situation,
thanks to Linux. More specifically, thanks to the maintainer of BG-Rescue Linux, an invaluable distro for
this type of situation.

This article comes from Linux Journal - The Premier Magazine of the Linux Community
http://www.linuxjournal.com

The URL for this story is:
http://www.linuxjournal.com/article.php?sid=7596


